412002

Lecture Notes in Earth Sciences

Edited by Somdev Bhattacharji, Gerald M. Friedman, Horst J. Neugebauer and Adolf Seilacher

18

N.M.S. Rock

Numerical Geology

A Source Guide, Glossary and Selective Bibliography to Geological Uses of Computers and Statistics

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

CONTENTS

List of Symbols and Abbreviations Used 1	1
Introduction — Why this book?	
Why study Numerical Geology?	3
Rationale and aims of this book	
How to Use this Book	7

SECTION I: INTRODUCTION TO GEOLOGICAL COMPUTER USE

TOPIC 1. UNDERSTANDING THE BASICS ABOUT COMPUTERS

1a. Background history of computer use in the Earth Sciences	
1b. Hardware: computer machinery	10
1b1.Types of computers: accessibility, accuracy, speed and storage capacity	10
1b2.Hardware for entering new data into a computer	
1b3.Storage media for entering, retrieving, copying and transferring pre-existing data	14
1b4.Hardware for interacting with a computer: Terminals	.15
1b5.Hardware for generating (outputting) hard-copies	16
1b6.Modes of interacting with a computer from a terminal	.17
1b7.The terminology of data-files as stored on computers	
Ic. Software: programs and programming languages	
1c1.Types of software	18
1c2.Systems software (operating systems and systems utilities)	.18
1c3.Programming languages	20
1c4.Graphics software standards	23
Id. Mainframes versus micros — which to use?	23
TOPIC 2. RUNNING PROGRAMS: MAKING BEST USE OF EXISTING ONES,	
OR PROGRAMMING YOURSELF	
2. Writing stand-alone programs from scratch	25
The Sources of software for specialised geological applications	26
Le Using proprietary or published subroutine libraries	27
M Using 'Everyman' packages	29
A comparison of options	32
K-1 Estimation evidencies (shere) - and (nearest intercents), second on the second	
TOPIC 3. COMPUTERS AS SOURCES OF GEOSCIENCE INFORMATION:	
NETWORKS & DATABASES	
3. Communicating between computer users: Mail and Network Systems	34
3 Archiving and Compiling Large Bodies of Information: Databases and Information systems	37
361 Progress with Databases and Information Dissemination in the Geoscience Community	37
362 Implementing and running databases: DataBase Management Systems (DBMS)	.43
363.Database architecture — types of database structure	45
Set Pacificating exchange of data: standard formats and procedures	
Techniang exchange of data. Standard formats and procedures.	
TOPIC 4. WRITING, DRAWING AND PUBLISHING BY COMPUTER	
 Computer-assisted writing (word-processing). 	49
Computer-Assisted (Desktop) Publishing (CAP/DTP)	50
 Producing Maps & Plots: Computer-Assisted Drafting (CAD) and Mapping 	
Combining graphics and databases: Geographic Information Systems (GIS)	
graphics and databases. Geographic information Systems (OIS)	54
TOPIC 5. USING COMPUTERS TO BACK UP HUMAN EFFORT: COMPUTER-ASSI	STED
EXPERT SYSTEMS & ARTIFICIAL INTELLIGENCE	
Su Computers as teachers: computer-aided instruction (CAI)	57
Summoid computers' in geology: Artificial Intelligence (AI) and Expert Systems	50
and Expert Systems	39

SECTION II. THE BEHAVIOUR OF NUMBERS: ELEMENTARY STATISTICS

TOPIC 6. SCALES OF MEASUREMENT AND USES OF NUMBERS IN GEOLOGY

6a.	Dichotomous (binary, presence/absence, boolean, logical, yes/no) data	63
6b.	Nominal (multistate, identification, categorical, grouping, coded) data	64
6c.	Ordinal (ranking) data	64
	Interval data	
6e.	Ratio data	66
	Angular (orientation) data	
	Alternative ways of classifying scales of measurement	

TOPIC 7. SOME CRUCIAL DEFINITIONS AND DISTINCTIONS

. 68
. 69
. 7
. 7
. 7
. 72
. 7
. 7

TOPIC 8. DESCRIBING GEOLOGICAL DATA DISTRIBUTIONS

8a.The main types of hypothetical data distribution encountered in geology	76
8a1.The Normal (Gaussian) distribution	76
8a2.The LogNormal distribution	77
8a3.The Gamma (Γ) distribution	80
8a4.The Binomial distribution	80
8a5.The Multinomial distribution	81
8a6.The Hypergeometric distribution	81
8a7.The Poisson distribution	
8a8.The Negative Binomial distribution	82
8a9.How well are the hypothetical data distributions attained by real geological data?	83
8b.The main theoretical sampling distributions encountered in geology	
8b1. χ^2 distribution	
8b2. Student's t distribution	
8b3.Fisher's (Snedecor's) F distribution	85
8b4.Relationships between the Normal and statistical distributions	85
8c.Calculating summary statistics to describe real geological data distributions	86
8c1.Estimating averages (measures of location, centre, central tendency)	
8c2.Estimating spread (dispersion, scale, variability)	
8c3.Estimating symmetry (skew) and 'peakedness' (kurtosis)	92
8d.Summarising data graphically: EXPLORATORY DATA ANALYSIS (EDA)	92
8e.Comparing real with theoretical distributions: GOODNESS-OF-FIT TESTS	94
8e1.A rather crude omnibus test: χ^2	95
8e2.A powerful omnibus test: the Kolmogorov ("one-sample Kolmogorov-Smirnov") test	
8e3.Testing goodness-of-fit to a Normal Distribution: specialized NORMALITY TESTS	96
8f.Dealing with non-Normal distributions	99
8f1.Use nonparametric methods, which are independent of the Normality assumption	99
8f2. Transform the data to approximate Normality more closely	
8f3.Separate the distribution into its component parts	
8g. Testing whether a data-set has particular parameters: ONE-SAMPLE TESTS	101
8g1. Testing against a population mean μ (population standard deviation σ known): the zM test	101
8g2. Testing against a population mean μ (population standard deviation σ known): one-group t- test	
oge, result a gamer a population mouth a (population standard dormation o allowing) one group resolution	
TOPIC 9. ASSESSING VARIABILITY, ERRORS AND EXTREMES IN GEOLOGICAL DAT	TA:
SAMPLING, PRECISION AND ACCURACY	
9a.Problems of Acquiring Geological Data: Experimental Design and other Dreams	102
9b. Sources of Variability & Error in Geological Data, and the Concept of 'Entities'	
9c. The Problems of Geological Sampling	
9d.Separating and Minimizing Sources of Error — Statistically and Graphically	107
suboparting and manifeling bources of bird — ballsdoary and oraphoarymanism	107

,E	Expressing errors: Confidence Limits	109
	961.Parametric confidence limits for the arithmetic mean and standard deviation	109
	9e2.Robust Confidence Intervals for the Mean, based on the Jackknife	110
	9e3.Robust Confidence Intervals for location estimates, based on Monte Carlo Swindles	111
	964.Nonparametric Confidence Limits for the Median based on the Binomial Model	112
D	bealing with outliers (extreme values): should they be included or rejected?	113
	9f1. Types of statistical outliers: true, false and bizarre, statistical and geological	. 113
	9f2. Types of geological data: the concept of 'data homogeneity'	114
	9f3.Tests for identifying statistical outliers manually	115
	9f4.Avoiding Catastrophes: Extreme Value Statistics	116
	9f5.Identifying Anomalies: Geochemical Thresholds and Gap Statistics	. 117

SECTION III: INTERPRETING DATA OF ONE VARIABLE: UNIVARIATE STATISTICS

TOPIC 10. COMPARING TWO GROUPS OF UNIVARIATE DATA	118
10a.Comparing Location (mean) and Scale (variance) Parametrically: t- and F-tests	120
10a1.Comparing variances parametrically: Fisher's F-test	120
10a2.Comparing Two Means Parametrically: Student's t-test (paired and unpaired)	121
10b.Comparing two small samples: Substitute Tests based on the Range	
10c.Comparing Medians of Two Related (paired) Groups of Data Nonparametrically	123
10c1.A crude test for related medians: the Sign Test	
10c2.A test for 'before-and-after' situations: the McNemar Test for the Significance of Changes	
10c3.A more powerful test for related medians: the Wilcoxon (matched-pairs, signed-ranks) Test	125
10c4. The most powerful test for related medians, based on Normal scores: the Van Eeden test	126
10d.Comparing Locations (medians) of Two Unrelated Groups Nonparametrically	126
10d1.A crude test for unrelated medians: the Median Test	127
10d2.A quick and easy test for unrelated medians: Tukey's T test	127
10d3.A powerful test for unrelated medians: the Mann-Whitney test	128
10d4. The Normal scores tests for unrelated medians: the Terry-Hoeffding test	
10e.Comparing the Scale of Two Independent Groups of Data Nonparametrically	129
10e1.The Ansari-Bradley, David, Moses, Mood and Siegel-Tukey Tests	
10e2.The Squared Ranks Test	130
10e3. The Normal scores approach: the Klotz Test	131
10f.Comparing the overall distribution of two unrelated groups nonparametrically	132
10f1.A crude test: the Wald-Wolfowitz (two-group) Runs Test	132
10f2.A powerful test: the Smirnov (two-group Kolmogorov-Smirnov) Test	133
10g. A Brief Comparison of Results of the Two-group Tests in Topic 10	134
TOPIC 11. COMPARING THREE OR MORE GROUPS OF UNIVARIATE DATA:	
One-way Analysis of Variance and Related Tests	
Ha.Determining parametrically whether several groups have homogeneous variances	135
11a1.Hartley's maximum-F test	136
11a2.Cochran's C Test	136
11a3.Bartlett's M Test	136
11b.Determining Parametrically whether Three or more Means are Homogeneous: One-Way ANOVA	
IIc.Determining which of several means differ: MULTIPLE COMPARISON TESTS	
11c1.Fisher's PLSD (= protected least significant difference) test	141
11c2.Scheffé's F Test	
11c3.Tukey's w (HSD = Honestly Significant Difference) Test	
11c4. The Student-Neuman-Keuls' (S-N-K) Test	
11c5. Duncan's New Multiple Range Test	
11c6. Dunnett's Test	144
11d.A quick parametric test for several means: LORD'S RANGE TEST	144
He.Determining nonparametrically whether several groups of data have homogeneous medians	
11e1. The q-group extension of the Median Test.	
11-0 A many many ful test. The Wester Will's One many ANOVA to Deale	145

THE SQUARED RANKS TEST	147
11g.Determining Nonparametrically whether Several Groups of Data have the same Distribution Sha	ape 148
11g1.The 3-group Smirnov Test (Birnbaum-Hall Test)	148
11g2.The q-group Smirnov Test	149
11h.A brief comparison of the results of multi-group tests in Topic 11	150

TOPIC 12. IDENTIFYING CONTROLS OVER DATA VARIATION: MORE SOPHISTICATED FORMS OF ANALYSIS OF VARIANCE

I OILIND OF THEILDID OF THEILITOP	
12a. A General Note on ANOVA and the General Linear Model (GLM)	151
12b. What determines the range of designs in ANOVA?	
12c. Two-way ANOVA on several groups of data: RANDOMIZED COMPLETE BLOCK DESIGNS and	
TWO-FACTORIAL DESIGNS WITHOUT REPLICATION	155
12c1.The parametric approach	
12c2.A simple nonparametric approach: the Friedman two-way ANOVA test	
12c3.A more complex nonparametric approach: the Quade Test	
12d. Two-way ANOVA on several related but incomplete groups of data: BALANCED INCOMPLETE	
BLOCK DESIGNS (BIBD)	159
12d1.The parametric approach	159
12d2. The nonparametric approach: the Durbin Test	160
12e. Some Simple Crossed Factorial Designs with Replication	
12e1.Two-factor crossed complete design with Replication: Balanced and Unbalanced	162
12e2. Three-factor crossed complete design with Replication: Balanced and Unbalanced	
12f. A Simple Repeated Measures Design	
12g. Analyzing data-within-data: HIERARCHICAL (NESTED) ANOVA	160

SECTION IV. INTERPRETING DATA WITH TWO VARIABLES: Bivariate Statistics

TOPIC 13. TESTING ASSOCIATION BETWEEN TWO OR MORE VARIABLES:

Correlation and concordance	16
13a. Measuring Linear Relationships between two Interval/ratio Variables: PEARSON'S CORRELATION	
COEFFICIENT, r	168
13b. Measuring Strengths of Relationships between Two Ordinal Variables: RANK CORRELATION	
COEFFICIENTS	170
13b1.Spearman's Rank Correlation Coefficient, ρ	. 170
13b2.Kendall's Rank Correlation Coefficient, τ	. 17
13c. Measuring Strengths of Relationships between Dichotomous and Higher-order Variables:	
POINT-BISERIAL AND BISERIAL COEFFICIENTS	172
13d. Testing whether Dichotomous or Nominal Variables are Associated	
13d1.Contingency Tables (cross-tabulation), χ^2 (Chi-squared) tests, and Characteristic Analysis	. 17
13d2.Fisher's Exact Probability Test	. 17
13d3.Correlation coefficients for dichotomous and nominal data: Contingency Coefficients	17
13e. Comparing Pearson's Correlation Coefficient with itself: FISHER'S Z TRANSFORMATION	. 17
13f. Measuring Agreement: Tests of Reliability and Concordance	
13f1.Concordance between Several Dichotomous Variables: Cochran's Q test	17
13f2.Concordance between ordinal & dichotomous variables: Kendall's coefficient of concordance	18
13g. Testing X-Y plots Graphically for Association, with or without Raw Data	. 18
13g1.The Corner (Olmstead-Tukey quadrant sum) Test for Association	18
13g2.A test for curved trends: the Correlation Ratio, eta(η)	
13h.Measures of weak trends: Guttman's μ ₂ , Goodman & Kruskal's γ	. 18
13i. Spurious and illusory correlations.	

TOPIC 14. QUANTIFYING RELATIONSHIPS BETWEEN TWO VARIABLES: Regression

	14a4.Testing the regression model for defects: Autocorrelation and Heteroscedasticity	189
	14a5.Assessing the influence of outliers	190
	14a6.Confidence bands on regression lines	191
	14a7.Comparing regressions between samples or samples and populations: Confidence Intervals	191
b,	Calculating Linear Relationships where Both Variables are Subject to Error:	
	'STRUCTURAL REGRESSION'	192
	Avoiding sensitivity to outliers: ROBUST REGRESSION	
d.	Regression with few assumptions: NONPARAMETRIC REGRESSION	194
	14d1.A method based on median slopes: Theil's Complete Method	194
	14d2.A quicker nonparametric method: Theil's Incomplete method	195
6,	Fitting curves: POLYNOMIAL (CURVILINEAR, NONLINEAR) REGRESSION	196
	14e1. The parametric approach	196

SECTION V: SOME SPECIAL TYPES OF GEOLOGICAL DATA

TOPIC 15. SOME PROBLEMATICAL DATA-TYPES IN GEOLOGY

15a. Geological Ratios	200
15b, Geological Percentages and Proportions with Constant Sum: CLOSED DATA	
15e.Methods for reducing or overcoming the Closure Problem	204
15c1.Data transformations and recalculations	204
15c2.Ratio normalising	205
15c3.Hypothetical open arrays	205
15c4.Remaining space variables	206
15c5.A recent breakthrough: log-ratio transformations	206
15d. The Problem of Missing Data	206
15e. The Problem of Major, Minor and Trace elements	208

TOPIC 16. ANALYSING ONE-DIMENSIONAL SEQUENCES IN SPACE OR TIME

6a.1	esting whether a single Series is Random or exhibits Trend or Periodicity	209
	16a1. Testing for trend in ordinal or ratio data: Edgington's nonparametric test	210
	16a2. Testing for cycles in ordinal or ratio data: Noether's nonparametric test	210
	16a3.Testing for specified trends: Cox & Stuart's nonparametric test	210
	16a4.Testing for trend in dichotomous, nominal or ratio data: the one-group Runs Test	212
	16a5. Testing parametrically for cyclicity in nominal data-sequences: AUTO-ASSOCIATION	213
	16a6.Looking for periodicity in a sequence of ratio data: AUTO-CORRELATION	
6b.(Comparing/correlating two sequences with one another	217
	16b1.Comparing two sequences of nominal (multistate) data: CROSS-ASSOCIATION	217
	16b2.Comparing two sequences of ratio data: CROSS CORRELATION	218
	16b3.Comparing two ordinal or ratio sequences nonparametrically: Burnaby's χ^2 procedure	219
6c.	Assessing the control of geological events by past events	221
	16c1.Quantifying the tendency of one state to follow another: transition probability matrices	221
	16c2.Assessing whether sequences have 'memory': MARKOV CHAINS and PROCESSES	222
	16c3. Analyzing the tendency of states to occur together: SUBSTITUTABILITY ANALYSIS	223
6d.	Sequences as combinations of waves: SPECTRAL (FOURIER) ANALYSIS	224
60.	Separating 'noise' from 'signal': FILTERING, SPLINES, TIME-TRENDS	225
	PIC 17. ASSESSING GEOLOGICAL ORIENTATION DATA: AZIMUTHS, DIPS AND STRIKES	
7a.	Special Properties of Orientation Data	226
7b.	Describing distributions of 2-dimensional (circular) orientation data	227
	17b1.Graphical display	227
	17b2.Circular summary statistics	
	17b3.Circular data distributions	
7c.	Testing for uniformity versus preferred orientation in 2-D orientation data	230
	17c1.A simple nonparametric test: Hodges-Ajne Test	230
	17c2.A more powerful nonparametric EDF test: Kuiper's Test	231
	17c3.A powerful nonparametric test: Watson U^2 Test	. 231
	17c4.The standard parametric test: Rayleigh's Test	232

17d.One-group tests for mean directions and concentrations	233	
17e.Comparing two groups of 2-dimensional data		
17e1.A nonparametric test: Mardia's uniform scores	234	
17e2.An alternative nonparametric test: Watson's U ²	235	
17e3.A linear nonparametric test applicable to angular data: the Wald-Wolfowitz Runs test		
17f. Comparing three or more groups of 2-dimensional data		
17f1.Nonparametric testing: multigroup extension of Mardia's Uniform Scores Test	237	
17f2.Parametric test for equal concentrations & mean directions: multigroup Watson-Williams Test	237	
17g. Introduction to 3-dimensional Orientation Data	238	
17h. Describing distributions of 3-dimensional orientation data	240	
17h1.Displaying and interpreting spherical data graphically		
17h2.Spherical data distributions		
17h3.Summarising real distributions of spherical data: Vector Means and Confidence Cones		
17i. Testing for uniformity versus preferred orientation in 3-D orientation data		
17j. Comparing two groups of 3-dimensional orientation data	243	
17j1.Testing for equality of two concentrations	243	
17j2. Testing for equality of two mean directions: Watson-Williams test	243	
17k. Comparing three or more groups of 3-dimensional data	244	
17k1.Testing whether three or more concentrations are homogeneous	244	
17k2. Testing whether three or more mean directions are homogeneous		

SECTION VI: ADVANCED TECHNIQUES

Introduction	246
A Note on Matrix Algebra	246
A note on Scales of Measurement and Multivariate Nonparametric Methods	246
TOPIC 18. MODELLING GEOLOGICAL PROCESSES NUMERICALLY	
18a. Univariate Modelling of Magmatic Processes	247
18b. Multivariate Modelling of Mixing, Reactions, & Parent-Daughter Problems	249
TOPIC 19. ANALYZING RELATIONSHIPS BETWEEN MORE THAN TWO VARIABLES	
19a. Homing in on the Correlation of Two Variables among Many: PARTIAL CORRELATION	252
19b. Assessing the Effect of Several Independent Ratio Variables on One Dependent Ratio Variable:	
MULTIPLE REGRESSION.	253
19b1.Multiple Linear Regression	253
19b2.Stepwise Multiple Regression	257
19b3.Overcoming problems: Ridge Regression and Generalized Lease Squares (GLS)	257
19b4.Nonparametric multiple regression	258
19c. Relationships involving Dichotomous or Nominal Independent Variables: GROUPED	
REGRESSION	258
19d. Relationships involving Dichotomous or Nominal Dependent Variables or Ratios:	
LOGISTIC REGRESSION	259
19e. Correlating two sets of several variables each: CANONICAL CORRELATION	261
TOPIC 20. ANALYSING SPATIALLY DISTRIBUTED DATA: Thin Sections, Maps, Mineral deposits and the like	
20a. Analyzing Thin Sections: Petrographic Modal Analysis	263
20b. Analyzing Spatial Distributions of Points on Maps	263
20b1. Testing for random, uniform and clustered point distributions: QUADRAT ANALYSIS	264
20b2. Analyzing distributions via distances between points: NEAREST NEIGHBOUR ANALYSIS	260
20b3.Contouring methods	
20c. Fitting Planes and Surfaces to Spatial Data: TREND SURFACE ANALYSIS (TSA) AND	
TWO-DIMENSIONAL REGRESSION	26
20d. Spatial Statistics with Confidence Estimation: GEOSTATISTICS and KRIGING	27
20d1.Estimating rates of change of regionalized variables along specific trends: Semi-variograms	. 27
20d2.Kriging	27

TOPIC 21. CLASSIFYING OBJECTS FROM FIRST PRINCIPLES

21a.Measuring similarity and dissimilarity between multivariate objects: MATCHING AND	
DISTANCE COEFFICIENTS	275
21a1.Measuring similarity between dichotomous/nominal data: MATCHING COEFFICIENTS	276
21a2.Measuring similarity between ordinal to ratio data: DISTANCE COEFFICIENTS	278
21b.Producing Dendrograms: HIERARCHICAL CLUSTER ANALYSIS	281
21b1.An Overview of Available Methods	281
21b2.Divisive cluster analysis on dichotomous/nominal data: ASSOCIATION ANALYSIS	292
21c.Defining Discrete/Fuzzy Clusters: NON-HIERARCHICAL CLUSTER ANALYSIS	292
21c1.K-means Cluster Analysis	293
21c2.The Refined, Iterative K-means Method	295
21d.Displaying groupings in as few dimensions as possible: ORDINATION	296
21d1.Metric and Nonmetric MultiDimensional Scaling (MDS)	
21d4.Quadratic Loss Functions	

TOPIC 22. COMPARING 'KNOWNS' AND ASSIGNING 'UNKNOWNS':

Discriminant Analysis and related methods	
2a. Introduction	304
2b. Comparing Two or more Groups of Multivariate Data: DISCRIMINANT ANALYSIS	304
22b1.Two-group Parametric Discriminant Analysis	307
22b2.Multi-group Discriminant (Canonical Variate) Analysis (MDA)	309
2c. Comparing Groups of Multivariate Dichotomous Data: ADAPTIVE PATTERN RECOGNITION	312

TOPIC 23. EXAMINING STRUCTURE, RECOGNIZING PATTERNS & REDUCING THE DIMENSIONALITY OF MULTIVARIATE DATA

23a.	Graphical Methods of Displaying Multivariate Data in Two-Dimensions	314
23b.	Finding Structure in Multivariate Data: PRINCIPAL COMPONENTS ANALYSIS	315
23c.	Fitting Multivariate Data to a Model: FACTOR ANALYSIS	318
	23c1.Looking for Geological Control over Data Variations: R-MODE FACTOR ANALYSIS	
	23c2.Analyzing Series and Mixtures in Terms of End-members: Q-MODE FACTOR ANALYSIS	326
	23c3.Pattern Recognition by Combining Q- and R-modes: CORRESPONDENCE ANALYSIS	327
23d.	Epilogue: the Statistical 'Zap' versus the 'Shotgun' Approach	328

Selective	Bibliography	. 32

Hossary	and	Index	37	9
---------	-----	-------	----	---